题目 - letcode1438
难度 - 中等
给你一个整数数组 nums ,和一个表示限制的整数 limit,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit 。如果不存在满足条件的子数组,则返回 0 。
- 示例 1
输入:nums = [8,2,4,7], limit = 4
输出:2
解释:所有子数组如下:
[8] 最大绝对差 |8-8| = 0 <= 4.
[8,2] 最大绝对差 |8-2| = 6 > 4.
[8,2,4] 最大绝对差 |8-2| = 6 > 4.
[8,2,4,7] 最大绝对差 |8-2| = 6 > 4.
[2] 最大绝对差 |2-2| = 0 <= 4.
[2,4] 最大绝对差 |2-4| = 2 <= 4.
[2,4,7] 最大绝对差 |2-7| = 5 > 4.
[4] 最大绝对差 |4-4| = 0 <= 4.
[4,7] 最大绝对差 |4-7| = 3 <= 4.
[7] 最大绝对差 |7-7| = 0 <= 4.
因此,满足题意的最长子数组的长度为 2 。
- 示例 2
输入:nums = [10,1,2,4,7,2], limit = 5
输出:4
解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
- 示例 3:
输入:nums = [4,2,2,2,4,4,2,2], limit = 0
输出:3
审题操作
- 题目中, 要求的是获取
最大值
和最小值
. - 题目要求输出的结果是数字的连续长度, 所以不要错误的把绝对值差值直接输出.
我就犯了这个错误
.
思路1
顺序扫描
- 先比较(0-1) (0-2) (0-3) 选择满足的条件.
- 然后缩短头结点范围(1-2) (1-3)
- 不断缩小. 直到数字个数为1.
不难写出如下代码:
class Solution {
// 实际上是求最大值和最小值
// 注意审题: 最大是求的长度
public int longestSubarray(int[] nums, int limit) {
int lastOkLimitLength = 0;
for(int i=0; i<nums.length; i++){
// 头结点 从i开始计算
int max = nums[i], min = nums[i];
for(int j=i;j<nums.length;j++){
// 最大值和最小值都从头开始计算
if(nums[j]>max){max = nums[j];}
else if(nums[j]<min){min=nums[j];}
// 比较
int limitNum = Math.abs(max-min);
int limitLength = j-i+1;
if(limitLength > lastOkLimitLength && limitNum <= limit ){
lastOkLimitLength = limitLength;
}
}
}
return lastOkLimitLength;
}
}
# 这边错误的把绝对值当长度进行输出了. 这是一个错误的情况.
恐怖的测试用例
- case 1 - 大概2000多数字
[7386080,9043369,566116,155607,2192513,5102709,8009203,8124311,9220099,588704,7572203,4133378,3288454,1209376,224215,7213885,2408989,70926,953383,8985909,4537104,5409806,1128621,3708522,50534,9108260,2259019,1611400,5863523,3355077,4658980,8074627,2922137,7764681,2408538,8959208,5315886,2714416,6616752,...]
6466408
- case 2 - 相同数字1 - 大概4000多数字
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1...]
10
局部优化
-
1 绝对值大小判断优化
我们发现.limit
和最大-最小
相关. 只有当最大
/最小
变化的时候才会出现变化.- 当某一次变化时, 不满足
<limit
条件. 那么后续的数字也就无需判断了. - 当
最大/最小
变化时. 需要重新判断.
- 当某一次变化时, 不满足
-
2 外层循环结束条件
因为, 我们寻找的是最大的长度. 所以当index=i时
,如果满足length-i
的最大长度. 表示整个长度都符合. 那么后续的操作也就无需进行判断. -
3 注意数字相同的情况 - Case2
#具体优化操作算法
# 注意点1 - 优化
outerJ:
for (int j = i; j < nums.length; j++) {
// 优化点2 - 有数字变化再进行比较
flag = false;
// 最大值和最小值都从头开始计算
if (nums[j] > max) {
max = nums[j];
flag = true;
} else if (nums[j] < min) {
min = nums[j];
flag = true;
}
if (flag) {
// 优化点1
// 比较
int limitNum = Math.abs(max - min);
// int limitLength = j-i+1;
if (limitNum <= limit) {
// if(limitLength > lastOkLimitLength) {
// }
length++;
} else {
break outerJ;
}
} else {
length++;
}
}
# 注意点 2 - 优化
if(lastOkLimitLength >= ((nums.length-i+1)-1)) {
break outerI;
}
思路2
略. 感觉一定有什么比O(N^N)
时间复杂度高的算法. 有时间再继续探索吧.
结论
可以看到. 这个题目不是特别的难. 获取判断最大最小值, 随后获取差值. 但是其中的2个测试用例想要不超时. 还是需要如上的3个优化操作的.
提交记录惨不忍睹. 汗.
Reference
[1] letcode-1438
[2] https://github.com/SeanYanxml/letcode-all