[LetCode-1438] 绝对差不超过限制的最长连续子数组

题目 - letcode1438

难度 - 中等
给你一个整数数组 nums ,和一个表示限制的整数 limit,请你返回最长连续子数组的长度,该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit 。

如果不存在满足条件的子数组,则返回 0 。

  • 示例 1
输入:nums = [8,2,4,7], limit = 4
输出:2 
解释:所有子数组如下:
[8] 最大绝对差 |8-8| = 0 <= 4.
[8,2] 最大绝对差 |8-2| = 6 > 4. 
[8,2,4] 最大绝对差 |8-2| = 6 > 4.
[8,2,4,7] 最大绝对差 |8-2| = 6 > 4.
[2] 最大绝对差 |2-2| = 0 <= 4.
[2,4] 最大绝对差 |2-4| = 2 <= 4.
[2,4,7] 最大绝对差 |2-7| = 5 > 4.
[4] 最大绝对差 |4-4| = 0 <= 4.
[4,7] 最大绝对差 |4-7| = 3 <= 4.
[7] 最大绝对差 |7-7| = 0 <= 4. 
因此,满足题意的最长子数组的长度为 2 。
  • 示例 2
输入:nums = [10,1,2,4,7,2], limit = 5
输出:4 
解释:满足题意的最长子数组是 [2,4,7,2],其最大绝对差 |2-7| = 5 <= 5 。
  • 示例 3:
输入:nums = [4,2,2,2,4,4,2,2], limit = 0
输出:3

审题操作

  • 题目中, 要求的是获取最大值最小值.
  • 题目要求输出的结果是数字的连续长度, 所以不要错误的把绝对值差值直接输出. 我就犯了这个错误.

思路1

顺序扫描
  • 先比较(0-1) (0-2) (0-3) 选择满足的条件.
  • 然后缩短头结点范围(1-2) (1-3)
  • 不断缩小. 直到数字个数为1.

不难写出如下代码:

class Solution {
    // 实际上是求最大值和最小值
    // 注意审题: 最大是求的长度
    public int longestSubarray(int[] nums, int limit) {
        int lastOkLimitLength = 0;
        for(int i=0; i<nums.length; i++){
            // 头结点 从i开始计算
            int max = nums[i], min = nums[i];
            for(int j=i;j<nums.length;j++){
                // 最大值和最小值都从头开始计算
                if(nums[j]>max){max = nums[j];}
                else if(nums[j]<min){min=nums[j];}
                      // 比较
                int limitNum = Math.abs(max-min);
                int limitLength = j-i+1;
                if(limitLength > lastOkLimitLength && limitNum <= limit ){
                	    lastOkLimitLength = limitLength;
                }   
            }
        }
        return lastOkLimitLength;
    }
}
# 这边错误的把绝对值当长度进行输出了. 这是一个错误的情况.

恐怖的测试用例

  • case 1 - 大概2000多数字
[7386080,9043369,566116,155607,2192513,5102709,8009203,8124311,9220099,588704,7572203,4133378,3288454,1209376,224215,7213885,2408989,70926,953383,8985909,4537104,5409806,1128621,3708522,50534,9108260,2259019,1611400,5863523,3355077,4658980,8074627,2922137,7764681,2408538,8959208,5315886,2714416,6616752,...]
6466408
  • case 2 - 相同数字1 - 大概4000多数字
[[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1...]
10

局部优化

  • 1 绝对值大小判断优化
    我们发现. limit最大-最小相关. 只有当最大/最小变化的时候才会出现变化.

    • 当某一次变化时, 不满足<limit条件. 那么后续的数字也就无需判断了.
    • 最大/最小变化时. 需要重新判断.
  • 2 外层循环结束条件
    因为, 我们寻找的是最大的长度. 所以当index=i时,如果满足length-i的最大长度. 表示整个长度都符合. 那么后续的操作也就无需进行判断.

  • 3 注意数字相同的情况 - Case2

#具体优化操作算法
# 注意点1 - 优化
	outerJ: 
			for (int j = i; j < nums.length; j++) {
				// 优化点2 - 有数字变化再进行比较
				flag = false;
				// 最大值和最小值都从头开始计算
				if (nums[j] > max) {
					max = nums[j];
					flag = true;
				} else if (nums[j] < min) {
					min = nums[j];
					flag = true;
				}

				if (flag) {
					// 优化点1
					// 比较
					int limitNum = Math.abs(max - min);
					// int limitLength = j-i+1;
					if (limitNum <= limit) {
						// if(limitLength > lastOkLimitLength) {
						// }
						length++;
					} else {
						break outerJ;
					}
				} else {
					length++;
				}
	}

# 注意点 2 - 优化
if(lastOkLimitLength >= ((nums.length-i+1)-1)) {
     break outerI;
}

思路2

略. 感觉一定有什么比O(N^N)时间复杂度高的算法. 有时间再继续探索吧.


结论

可以看到. 这个题目不是特别的难. 获取判断最大最小值, 随后获取差值. 但是其中的2个测试用例想要不超时. 还是需要如上的3个优化操作的.

在这里插入图片描述
提交记录惨不忍睹. 汗.


Reference

[1] letcode-1438
[2] https://github.com/SeanYanxml/letcode-all

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页